From bench to bedside: elucidating VEGF(R) inhibitor-related heart failure in cancer treatment | Journal of Translational Medicine

Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176(6):1248–64.
Google Scholar
Jayson GC, Kerbel R, Ellis LM, Harris AL. Antiangiogenic therapy in oncology: current status and future directions. Lancet Lond Engl. 2016;388(10043):518–29.
Google Scholar
Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer. 2002;2(10):795–803.
Google Scholar
Tewari KS, Sill MW, Long HJ, Penson RT, Huang H, Ramondetta LM, et al. Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med. 2014;370(8):734–43.
Google Scholar
Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.
Google Scholar
Raymond E, Dahan L, Raoul JL, Bang YJ, Borbath I, Lombard-Bohas C, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):501–13.
Google Scholar
Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355(24):2542–50.
Google Scholar
Schmidinger M. Understanding and managing toxicities of vascular endothelial growth factor (VEGF) inhibitors. EJC Suppl EJC Off J EORTC Eur Organ Res Treat Cancer Al. 2013;11(2):172–91.
Schmidinger M, Bellmunt J. Plethora of agents, plethora of targets, plethora of side effects in metastatic renal cell carcinoma. Cancer Treat Rev. 2010;36(5):416–24.
Google Scholar
Kuang H, Yan Q, Li Z, Lin A, Li K, Zhang J, et al. Comprehensive analysis of VEGF/VEGFR inhibitor-induced immune-mediated hypertension: integrating pharmacovigilance, clinical data, and preclinical models. Front Immunol. 2024;15:1488853.
Google Scholar
Harrison J, Friese C, Barton D, Janz N, Pressler S, Davis M. Heart failure and long-term survival among older women with breast cancer. Oncol Nurs Forum. 2018;45(1):A1-11.
Google Scholar
Totzeck M, Schuler M, Stuschke M, Heusch G, Rassaf T. Cardio-oncology—strategies for management of cancer-therapy related cardiovascular disease. Int J Cardiol. 2019;1(280):163–75.
Google Scholar
Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375(15):1457–67.
Google Scholar
Shen J, Hu R, Lin A, Jiang A, Tang B, Liu Z, et al. Characterization of second primary malignancies post CAR T-cell therapy: real-world insights from the two global pharmacovigilance databases of FAERS and VigiBase. EClinicalMedicine. 2024;73:102684.
Google Scholar
Zhou C, Peng S, Lin A, Jiang A, Peng Y, Gu T, et al. Psychiatric disorders associated with immune checkpoint inhibitors: a pharmacovigilance analysis of the FDA Adverse Event Reporting System (FAERS) database. EClinicalMedicine. 2023;59:101967.
Google Scholar
Gu T, Jiang A, Zhou C, Lin A, Cheng Q, Liu Z, et al. Adverse reactions associated with immune checkpoint inhibitors and bevacizumab: a pharmacovigilance analysis. Int J Cancer. 2023;152(3):480–95.
Google Scholar
Tanaka C, Matsuda C, Kondo K, Tokunaga Y, Takahashi T, Kosugi C, et al. Phase II study of irinotecan and bevacizumab plus alternate day S-1 as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol. 2016;34(4_suppl):749–749.
Google Scholar
Bocci G, Falcone A, Fioravanti A, Orlandi P, Di Paolo A, Fanelli G, et al. Antiangiogenic and anticolorectal cancer effects of metronomic irinotecan chemotherapy alone and in combination with semaxinib. Br J Cancer. 2008;98(10):1619–29.
Google Scholar
Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013;16(14):7.
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Google Scholar
Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2018;46(D1):D649–55.
Google Scholar
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinforma Oxf Engl. 2009;25(8):1091–3.
Google Scholar
Lin A, Qi C, Wei T, Li M, Cheng Q, Liu Z, et al. CAMOIP: a web server for comprehensive analysis on multi-omics of immunotherapy in pan-cancer. Brief Bioinform. 2022;23(3): bbac129.
Google Scholar
Li J, Horak KM, Su H, Sanbe A, Robbins J, Wang X. Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice. J Clin Invest. 2011;121(9):3689–700.
Google Scholar
Higo T, Naito AT, Sumida T, Shibamoto M, Okada K, Nomura S, et al. DNA single-strand break-induced DNA damage response causes heart failure. Nat Commun. 2017;24(8):15104.
Google Scholar
Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest. 2018;128(9):3716–26.
Google Scholar
Weiss RC, Pyles KD, Cho K, Brennan M, Fisher JS, Patti GJ, et al. Loss of mitochondrial pyruvate transport initiates cardiac glycogen accumulation and heart failure. BioRxiv Prepr Serv Biol. 2024;2024.06.06.597841.
Dick SA, Epelman S. Chronic heart failure and inflammation: what do we really know? Circ Res. 2016;119(1):159–76.
Google Scholar
Mann DL. Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ Res. 2015;116(7):1254–68.
Google Scholar
Nevers T, Salvador AM, Grodecki-Pena A, Knapp A, Velázquez F, Aronovitz M, et al. Left ventricular T-cell recruitment contributes to the pathogenesis of heart failure. Circ Heart Fail. 2015;8(4):776–87.
Google Scholar
Becher PM, Hinrichs S, Fluschnik N, Hennigs JK, Klingel K, Blankenberg S, et al. Role of Toll-like receptors and interferon regulatory factors in different experimental heart failure models of diverse etiology: IRF7 as novel cardiovascular stress-inducible factor. PLoS ONE. 2018;13(3): e0193844.
Google Scholar
Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, et al. Apoptosis and heart failure: the role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract. 2023;248:154669.
Google Scholar
Aung N, Wang Q, van Duijvenboden S, Burns R, Stoma S, Raisi-Estabragh Z, et al. Association of longer leukocyte telomere length with cardiac size, function, and heart failure. JAMA Cardiol. 2023;8(9):808–15.
Google Scholar
Rauniyar K, Bokharaie H, Jeltsch M. Expansion and collapse of VEGF diversity in major clades of the animal kingdom. Angiogenesis. 2023;26(3):437–61.
Google Scholar
link