November 15, 2025

Zenith Tranquil

Information treatments and health conditions

Ovarian cancer and the heart: pathophysiology, chemotherapy-induced cardiotoxicity, and new therapeutic strategies | Journal of Ovarian Research

Ovarian cancer and the heart: pathophysiology, chemotherapy-induced cardiotoxicity, and new therapeutic strategies | Journal of Ovarian Research
  • Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol. 2017;41:3–14.

    Article 
    PubMed 

    Google Scholar 

  • Stewart C, Ralyea C, Lockwood S. Ovarian cancer: an integrated review. Semin Oncol Nurs. 2019;35(2):151–6.

    Article 
    PubMed 

    Google Scholar 

  • Zamwar UM, Anjankar AP. Aetiology, epidemiology, histopathology, classification, detailed evaluation, and treatment of ovarian cancer. Cureus. 2022;14(10):e30561.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kujawa KA, Lisowska KM. Ovarian cancer–from biology to clinic. Postepy Hig Med Dosw (Online). 2015;69:1275–90.

    Article 
    PubMed 

    Google Scholar 

  • Kossai M, Leary A, Scoazec JY, Genestie C. Ovarian cancer: a heterogeneous disease. Pathobiology. 2018;85(1–2):41–9.

    Article 
    PubMed 

    Google Scholar 

  • Grisham RN, Chui MH. Advancements in low-grade serous carcinoma of the ovary and peritoneum. Curr Oncol Rep. 2022;24(11):1549–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bell DW, Ellenson LH. Molecular genetics of endometrial carcinoma. Annu Rev Pathol. 2019;14:339–67.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cochrane DR, Tessier-Cloutier B, Lawrence KM, Nazeran T, Karnezis AN, Salamanca C, Cheng AS, McAlpine JN, Hoang LN, Gilks CB, et al. Clear cell and endometrioid carcinomas: are their differences attributable to distinct cells of origin? J Pathol. 2017;243(1):26–36.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bergman PJ. Paraneoplastic hypercalcemia. Top Companion Anim Med. 2012;27(4):156–8.

    Article 
    PubMed 

    Google Scholar 

  • Babaier A, Ghatage P. Mucinous cancer of the ovary: overview and current status. Diagnostics (Basel). 2020;10(1).

  • Gracia M, Alonso-Espias M, Zapardiel I. Current limits of conservative treatment in ovarian cancer. Curr Opin Oncol. 2023;35(5):389–93.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gica N, Peltecu G, Chirculescu R, Gica C, Stoicea MC, Serbanica AN, Panaitescu AM. Ovarian germ cell tumors: pictorial essay. Diagnostics (Basel). 2022;12(9).

  • Fields EC, McGuire WP, Lin L, Temkin SM. Radiation treatment in women with ovarian cancer: past, present, and future. Front Oncol. 2017;7:177.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across different malignancies: a new perspective. Cancer. 2014;120(22):3446–56.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Panagopoulou M, Panou T, Gkountakos A, Tarapatzi G, Karaglani M, Tsamardinos I, Chatzaki E. BRCA1 & BRCA2 methylation as a prognostic and predictive biomarker in cancer: implementation in liquid biopsy in the era of precision medicine. Clin Epigenetics. 2024;16(1):178.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hendrikse CSE, Theelen PMM, van der Ploeg P, Westgeest HM, Boere IA, Thijs AMJ, Ottevanger PB, van de Stolpe A, Lambrechts S, Bekkers RLM, et al. The potential of RAS/RAF/MEK/ERK (MAPK) signaling pathway inhibitors in ovarian cancer: a systematic review and meta-analysis. Gynecol Oncol. 2023;171:83–94.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boyarskikh UA, Gulyaeva LF, Avdalyan AM, Kechin AA, Khrapov EA, Lazareva DG, Kushlinskii NE, Melkonyan A, Arakelyan A, Filipenko ML. Spectrum of TP53 mutations in BRCA1/2 associated high-grade serous ovarian cancer. Front Oncol. 2020;10:1103.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang HJ, Chun SM, Kim KR, Sohn I, Sung CO. Clinical relevance of gain-of-function mutations of p53 in high-grade serous ovarian carcinoma. PLoS ONE. 2013;8(8):e72609.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Braga EA, Fridman MV, Moscovtsev AA, Filippova EA, Dmitriev AA, Kushlinskii NE. LncRNAs in ovarian cancer progression, metastasis, and main pathways: CeRNA and alternative mechanisms. Int J Mol Sci. 2020;21(22).

  • Yang G, Lu X, Yuan L. LncRNA: a link between RNA and cancer. Biochim Biophys Acta. 2014;1839(11):1097–109.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M, Calin GA. Going circular: history, present, and future of circrnas in cancer. Oncogene. 2023;42(38):2783–800.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature. 2006;442(7099):203–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bhadra M, Sachan M, Nara S. Current strategies for early epithelial ovarian cancer detection using MiRNA as a potential tool. Front Mol Biosci. 2024;11:1361601.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vang S, Wu HT, Fischer A, Miller DH, MacLaughlan S, Douglass E, Comisar L, Steinhoff M, Collins C, Smith PJ, et al. Identification of ovarian cancer metastatic MiRNAs. PLoS ONE. 2013;8(3):e58226.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Braicu OL, Budisan L, Buiga R, Jurj A, Achimas-Cadariu P, Pop LA, Braicu C, Irimie A, Berindan-Neagoe I. MiRNA expression profiling in formalin-fixed paraffin-embedded endometriosis and ovarian cancer samples. Onco Targets Ther. 2017;10:4225–38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yao S, Zhao T, Jin H. Expression of MicroRNA-325-3p and its potential functions by targeting HMGB1 in non-small cell lung cancer. Biomed Pharmacother. 2015;70:72–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kandettu A, Adiga D, Devi V, Suresh PS, Chakrabarty S, Radhakrishnan R, Kabekkodu SP. Deregulated MiRNA clusters in ovarian cancer: imperative implications in personalized medicine. Genes Dis. 2022;9(6):1443–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chao H, Zhang M, Hou H, Zhang Z, Li N. HOTAIRM1 suppresses cell proliferation and invasion in ovarian cancer through facilitating ARHGAP24 expression by sponging miR-106a-5p. Life Sci. 2020;243:117296.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tabayashi K, Suzuki Y, Nagamine S, Ito Y, Sekino Y, Mohri H. A clinical trial of allopurinol (Zyloric) for myocardial protection. J Thorac Cardiovasc Surg. 1991;101(4):713–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zaman MS, Maher DM, Khan S, Jaggi M, Chauhan SC. Current status and implications of MicroRNAs in ovarian cancer diagnosis and therapy. J Ovarian Res. 2012;5(1):44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo P, Xiong X, Zhang S, Peng D. miR-100 resensitizes resistant epithelial ovarian cancer to cisplatin. Oncol Rep. 2016;36(6):3552–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang H, Kong W, He L, Zhao JJ, O’Donnell JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV, et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008;68(2):425–33.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Suryawanshi S, Vlad AM, Lin HM, Mantia-Smaldone G, Laskey R, Lee M, Lin Y, Donnellan N, Klein-Patel M, Lee T, et al. Plasma MicroRNAs as novel biomarkers for endometriosis and endometriosis-associated ovarian cancer. Clin Cancer Res. 2013;19(5):1213–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Asl ER, Sarabandi S, Shademan B, Dalvandi K, Sheikhansari G, Nourazarian A. MicroRNA targeting: a novel therapeutic intervention for ovarian cancer. Biochem Biophys Rep. 2023;35:101519.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu Z, Yuan L, Yang X, Yi C, Lu J. The roles of long non-coding RNAs in ovarian cancer: from functions to therapeutic implications. Front Oncol. 2024;14:1332528.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tian X, Zuo X, Hou M, Li C, Teng Y. LncRNA-H19 regulates chemoresistance to carboplatin in epithelial ovarian cancer through microRNA-29b-3p and STAT3. J Cancer. 2021;12(19):5712–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng X, Zhou Y, Chen W, Chen L, Lu J, He F, Li X, Zhao L. Ginsenoside 20(S)-Rg3 prevents PKM2-targeting miR-324-5p from H19 sponging to antagonize the Warburg effect in ovarian cancer cells. Cell Physiol Biochem. 2018;51(3):1340–53.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li J, Huang Y, Deng X, Luo M, Wang X, Hu H, Liu C, Zhong M. Long noncoding RNA H19 promotes transforming growth factor-beta-induced epithelial-mesenchymal transition by acting as a competing endogenous RNA of miR-370-3p in ovarian cancer cells. Onco Targets Ther. 2018;11:427–40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao H, Ding F, Zheng G. LncRNA TMPO-AS1 promotes LCN2 transcriptional activity and exerts oncogenic functions in ovarian cancer. FASEB J. 2020;34(9):11382–94.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yan H, Li H, Silva MA, Guan Y, Yang L, Zhu L, Zhang Z, Li G, Ren C. LncRNA FLVCR1-AS1 mediates miR-513/YAP1 signaling to promote cell progression, migration, invasion and EMT process in ovarian cancer. J Exp Clin Cancer Res. 2019;38(1):356.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qiu JJ, Lin YY, Ye LC, Ding JX, Feng WW, Jin HY, Zhang Y, Li Q, Hua KQ. Overexpression of long non-coding RNA HOTAIR predicts poor patient prognosis and promotes tumor metastasis in epithelial ovarian cancer. Gynecol Oncol. 2014;134(1):121–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu X, Zhao P, Luo Q, Wu X, Wang Y, Nan Y, Liu S, Gao W, Li B, Liu Z, et al. RUNX1-IT1 acts as a scaffold of STAT1 and NuRD complex to promote ROS-mediated NF-kappaB activation and ovarian cancer progression. Oncogene. 2024;43(6):420–33.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He SL, Chen YL, Chen QH, Tian Q, Yi SJ. LncRNA KCNQ1OT1 promotes the metastasis of ovarian cancer by increasing the methylation of EIF2B5 promoter. Mol Med. 2022;28(1):112.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu W, Tan S, Bai X, Ma S, Chen X. Long non-coding RNA LINC01215 promotes epithelial-mesenchymal transition and lymph node metastasis in epithelial ovarian cancer through RUNX3 promoter methylation. Transl Oncol. 2021;14(8):101135.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang A, Jin C, Li H, Qin Q, Li L. LncRNA ADAMTS9-AS2 regulates ovarian cancer progression by targeting miR-182-5p/FOXF2 signaling pathway. Int J Biol Macromol. 2018;120(Pt B):1705–13.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun T, Yang P, Gao Y. Long non-coding RNA EPB41L4A-AS2 suppresses progression of ovarian cancer by sequestering microRNA-103a to upregulate transcription factor RUNX1T1. Exp Physiol. 2020;105(1):75–87.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li S, Shen S, Ge W, Cen Y, Zhang S, Cheng X, Wang X, Xie X, Lu W. Long non-coding RNA SLC25A21-AS1 inhibits the development of epithelial ovarian cancer by specifically inducing PTBP3 degradation. Biomark Res. 2023;11(1):12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao J, Liu M, Zou Y, Mao M, Shen T, Zhang C, Song S, Sun M, Zhang S, Wang B, et al. Long non-coding RNA growth arrest-specific transcript 5 is involved in ovarian cancer cell apoptosis through the mitochondria-mediated apoptosis pathway. Oncol Rep. 2015;34(6):3212–21.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma N, Li S, Zhang Q, Wang H, Qin H, Wang S. Long non-coding RNA GAS5 inhibits ovarian cancer cell proliferation via the control of microRNA-21 and SPRY2 expression. Exp Ther Med. 2018;16(1):73–82.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gokulnath P, de Cristofaro T, Manipur I, Di Palma T, Soriano AA, Guarracino MR, Zannini M. Long non-coding RNA MAGI2-AS3 is a new player with a tumor suppressive role in high grade serous ovarian carcinoma. Cancers (Basel). 2019;11(12).

  • Chang H, Zhang X, Li B, Meng X. MAGI2-AS3 suppresses MYC signaling to inhibit cell proliferation and migration in ovarian cancer through targeting miR-525-5p/MXD1 axis. Cancer Med. 2020;9(17):6377–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tao P, Yang B, Zhang H, Sun L, Wang Y, Zheng W. The overexpression of LncRNA MEG3 inhibits cell viability and invasion and promotes apoptosis in ovarian cancer by sponging miR-205-5p. Int J Clin Exp Pathol. 2020;13(5):869–79.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang L, Xie HJ, Li YY, Wang X, Liu XX, Mai J. Molecular mechanisms of platinum–based chemotherapy resistance in ovarian cancer (Review). Oncol Rep. 2022;47(4).

  • Ghosh S. Cisplatin: the first metal based anticancer drug. Bioorg Chem. 2019;88:102925.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, Moreira PI. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem. 2009;16(25):3267–85.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21(7):440–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koka S, Das A, Zhu SG, Durrant D, Xi L, Kukreja RC. Long-acting phosphodiesterase-5 inhibitor Tadalafil attenuates doxorubicin-induced cardiomyopathy without interfering with chemotherapeutic effect. J Pharmacol Exp Ther. 2010;334(3):1023–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li XR, Cheng XH, Zhang GN, Wang XX, Huang JM. Cardiac safety analysis of first-line chemotherapy drug pegylated liposomal doxorubicin in ovarian cancer. J Ovarian Res. 2022;15(1):96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett. 2019;307:41–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eneh C, Lekkala MR. Dexrazoxane. In: StatPearls. edn. Treasure Island (FL) ineligible companies. Disclosure: Manidhar Reddy Lekkala declares no relevant financial relationships with ineligible companies.; 2024.

  • Bhagat A, Kleinerman ES. Anthracycline-Induced cardiotoxicity: causes, mechanisms, and prevention. Adv Exp Med Biol. 2020;1257:181–92.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Attachaipanich T, Chattipakorn SC, Chattipakorn N. Potential roles of melatonin in doxorubicin-induced cardiotoxicity: from cellular mechanisms to clinical application. Pharmaceutics. 2023;15(3).

  • Tundisi LL, Ataide JA, Costa JSR, Coelho DF, Liszbinski RB, Lopes AM, Oliveira-Nascimento L, de Jesus MB, Jozala AF, Ehrhardt C, et al. Nanotechnology as a tool to overcome macromolecules delivery issues. Colloids Surf B Biointerfaces. 2023;222:113043.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tahover E, Patil YP, Gabizon AA. Emerging delivery systems to reduce doxorubicin cardiotoxicity and improve therapeutic index: focus on liposomes. Anticancer Drugs. 2015;26(3):241–58.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther. 2014;10(4):853–8.

    Article 
    PubMed 

    Google Scholar 

  • Makwana V, Karanjia J, Haselhorst T, Anoopkumar-Dukie S, Rudrawar S. Liposomal doxorubicin as targeted delivery platform: current trends in surface functionalization. Int J Pharm. 2021;593:120117.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dessein PH, Gledhill RF. SLE in black S. Africans. Br J Rheumatol. 1988;27(1):72–3.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet. 2003;42(5):419–36.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spallarossa P, Maurea N, Cadeddu C, Madonna R, Mele D, Monte I, Novo G, Pagliaro P, Pepe A, Tocchetti CG, et al. A recommended practical approach to the management of anthracycline-based chemotherapy cardiotoxicity: an opinion paper of the working group on drug cardiotoxicity and cardioprotection, Italian society of cardiology. J Cardiovasc Med (Hagerstown). 2016;17(Suppl 1):S84–92.

    Article 
    CAS 

    Google Scholar 

  • Pignata S, Lauraine EP, du Bois A, Pisano C. Pegylated liposomal doxorubicin combined with carboplatin: a rational treatment choice for advanced ovarian cancer. Crit Rev Oncol Hematol. 2010;73(1):23–30.

    Article 
    PubMed 

    Google Scholar 

  • Bohdan M, Kowalczys A, Mickiewicz A, Gruchala M, Lewicka E. Cancer therapy-related cardiovascular complications in clinical practice: current perspectives. J Clin Med. 2021;10(8).

  • Jain D, Aronow W. Cardiotoxicity of cancer chemotherapy in clinical practice. Hosp Pract (1995). 2019;47(1):6–15.

    Article 
    PubMed 

    Google Scholar 

  • Padmanabhan R, Howard TH, Howard BH. Specific growth inhibitory sequences in genomic DNA from quiescent human embryo fibroblasts. Mol Cell Biol. 1987;7(5):1894–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herrera FG, Irving M, Kandalaft LE, Coukos G. Rational combinations of immunotherapy with radiotherapy in ovarian cancer. Lancet Oncol. 2019;20(8):e417–33.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chandra A, Pius C, Nabeel M, Nair M, Vishwanatha JK, Ahmad S, Basha R. Ovarian cancer: current status and strategies for improving therapeutic outcomes. Cancer Med. 2019;8(16):7018–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qin Y, Huang S, Tang J, Fan Y, Deng X, Guan P, Zhang Z, Wen Q, Li D. Case report: interstitial implantation radiotherapy combined with immunotherapy and GM-CSF in oligometastatic platinum-resistant ovarian cancer. Front Immunol. 2023;14:1329951.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Borella F, Ghisoni E, Giannone G, Cosma S, Benedetto C, Valabrega G, Katsaros D. Immune checkpoint inhibitors in epithelial ovarian cancer: an overview on efficacy and future perspectives. Diagnostics (Basel). 2020;10(3).

  • Zhu B, Strada SJ. The novel functions of cGMP-specific phosphodiesterase 5 and its inhibitors in carcinoma cells and pulmonary/cardiovascular vessels. Curr Top Med Chem. 2007;7(4):437–54.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Peak TC, Richman A, Gur S, Yafi FA, Hellstrom WJ. The role of PDE5 inhibitors and the no/cgmp pathway in cancer. Sex Med Rev. 2016;4(1):74–84.

    Article 
    PubMed 

    Google Scholar 

  • Samidurai A, Xi L, Das A, Kukreja RC. Beyond erectile dysfunction: cGMP-specific phosphodiesterase 5 inhibitors for other clinical disorders. Annu Rev Pharmacol Toxicol. 2023;63:585–615.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Das A, Durrant D, Salloum FN, Xi L, Kukreja RC. PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. Pharmacol Ther. 2015;147:12–21.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karami-Tehrani F, Moeinifard M, Aghaei M, Atri M. Evaluation of PDE5 and PDE9 expression in benign and malignant breast tumors. Arch Med Res. 2012;43(6):470–5.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fraser M, Chan SL, Chan SS, Fiscus RR, Tsang BK. Regulation of p53 and suppression of apoptosis by the soluble Guanylyl cyclase/cgmp pathway in human ovarian cancer cells. Oncogene. 2006;25(15):2203–12.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pantziarka P, Sukhatme V, Crispino S, Bouche G, Meheus L, Sukhatme VP. Repurposing drugs in oncology (ReDO)-selective PDE5 inhibitors as anti-cancer agents. Ecancermedicalscience. 2018;12:824.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Booth L, Roberts JL, Poklepovic A, Dent P. [pemetrexed + sildenafil], via autophagy-dependent HDAC downregulation, enhances the immunotherapy response of NSCLC cells. Cancer Biol Ther. 2017;18(9):705–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hamilton TK, Hu N, Kolomitro K, Bell EN, Maurice DH, Graham CH, Siemens DR. Potential therapeutic applications of phosphodiesterase inhibition in prostate cancer. World J Urol. 2013;31(2):325–30.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fisher PW, Salloum F, Das A, Hyder H, Kukreja RC. Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation. 2005;111(13):1601–10.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koka S, Xi L, Kukreja RC. Chronic treatment with long acting phosphodiesterase-5 inhibitor Tadalafil alters proteomic changes associated with cytoskeletal rearrangement and redox regulation in type 2 diabetic hearts. Basic Res Cardiol. 2012;107(2):249.

    Article 
    PubMed 

    Google Scholar 

  • McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 2017;31(1):63–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Straughn AR, Kakar SS. Withaferin A ameliorates ovarian cancer-induced cachexia and proinflammatory signaling. J Ovarian Res. 2019;12(1):115.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelm NQ, Straughn AR, Kakar SS. Withaferin A attenuates ovarian cancer-induced cardiac cachexia. PLoS ONE. 2020;15(7):e0236680.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma H, Qi G, Han F, Peng J, Yuan C, Kong B. PBK drives PARP inhibitor resistance through the TRIM37/NFkappaB axis in ovarian cancer. Exp Mol Med. 2022;54(7):999–1010.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen ZI, Ai DI. Cardiotoxicity associated with targeted cancer therapies. Mol Clin Oncol. 2016;4(5):675–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.