May 11, 2025

Zenith Tranquil

Information treatments and health conditions

Scoping review of deep learning research illuminates artificial intelligence chasm in otolaryngology-head and neck surgery

Scoping review of deep learning research illuminates artificial intelligence chasm in otolaryngology-head and neck surgery
  • Crowson, M. G. et al. A contemporary review of machine learning in otolaryngology–head and neck surgery. Laryngoscope 130, 45–51 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Bur, A. M., Shew, M. & New, J. Artificial intelligence for the otolaryngologist: a state of the art review. Otolaryngol. Neck Surg. 160, 603–611 (2019).

    Article 

    Google Scholar 

  • Liu, G. S., Jovanovic, N., Sung, C. K. & Doyle, P. C. A scoping review of artificial intelligence detection of voice pathology: challenges and opportunities. Otolaryngol. Neck Surg. 171, 658–666 (2024).

    Article 

    Google Scholar 

  • Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. FDA (2024).

  • ENT Navigation Application with Kick EM from Brainlab. Brainlab https://www.brainlab.com/surgery-products/overview-ent-products/ent-navigation-application/.

  • Reimagining the Way Medical Devices Are Designed. PacificMD Biotech https://www.pmdbiotech.com/.

  • Lu, J. H. et al. Assessment of adherence to reporting guidelines by commonly used clinical prediction models from a single vendor: a systematic review. JAMA Netw. Open 5, e2227779 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vasey, B. et al. Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nat. Med. 28, 924–933 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gajecki, T., Zhang, Y. & Nogueira, W. A deep denoising sound coding strategy for cochlear implants. IEEE Trans. Biomed. Eng. 70, 2700–2709 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Raghavan, A. M., Lipschitz, N., Breen, J. T., Samy, R. N. & Kohlberg, G. D. Visual speech recognition: improving speech perception in noise through artificial intelligence. Otolaryngol. -Head. Neck Surg. J. Am. Acad. Otolaryngol. -Head. Neck Surg. 163, 771–777 (2020).

    Article 

    Google Scholar 

  • Healy, E. W., Taherian, H., Johnson, E. M. & Wang, D. A causal and talker-independent speaker separation/dereverberation deep learning algorithm: Cost associated with conversion to real-time capable operation. J. Acoust. Soc. Am. 150, 3976 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cohen, J. F. et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open 6, e012799 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMC Med. 13, 1 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Des Jarlais, D. C., Lyles, C. & Crepaz, N. Improving the reporting quality of nonrandomized evaluations of behavioral and public health interventions: the TREND statement. Am. J. Public Health 94, 361–366 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • von Elm, E. et al. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ 335, 806–808 (2007).

    Article 

    Google Scholar 

  • Liu, X., Cruz Rivera, S., Moher, D., Calvert, M. J. & Denniston, A. K. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat. Med. 26, 1364–1374 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Liu, Y., Chen, P.-H. C., Krause, J. & Peng, L. How to read articles that use machine learning: users’ guides to the medical literature. JAMA 322, 1806–1816 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Selvaraju, R. R. et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128, 336–359 (2020).

    Article 

    Google Scholar 

  • Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning Deep Features for Discriminative Localization. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2921–2929 (IEEE, 2016). https://doi.org/10.1109/CVPR.2016.319.

  • Kamran, F. et al. Evaluation of sepsis prediction models before onset of treatment. NEJM AI 1, AIoa2300032 (2024).

    Article 

    Google Scholar 

  • Ruamviboonsuk, P. et al. Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study. Lancet Digit. Health 4, e235–e244 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lind Plesner, L. et al. Commercially available chest radiograph AI tools for detecting airspace disease, pneumothorax, and pleural effusion. Radiology 308, e231236 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Gomez Rossi, J., Rojas-Perilla, N., Krois, J. & Schwendicke, F. Cost-effectiveness of artificial intelligence as a decision-support system applied to the detection and grading of melanoma, dental caries, and diabetic retinopathy. JAMA Netw. Open 5, e220269 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seneviratne, M. G., Shah, N. H. & Chu, L. Bridging the implementation gap of machine learning in healthcare. BMJ Innov. 6, 45–47 (2020).

    Article 

    Google Scholar 

  • Mennella, C., Maniscalco, U., De Pietro, G. & Esposito, M. Ethical and regulatory challenges of AI technologies in healthcare: a narrative review. Heliyon 10, e26297 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crowson, M. G. & Rameau, A. Standardizing machine learning manuscript reporting in otolaryngology-head & neck surgery. Laryngoscope 132, 1698–1700 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Callahan, A. et al. Standing on FURM ground: a framework for evaluating fair, useful, and reliable AI models in health care systems. NEJM Catal. Innov. Care Deliv. 5, (2024).

  • Liu, G. S. et al. Deep learning classification of inverted papilloma malignant transformation using 3D convolutional neural networks and magnetic resonance imaging. Int. Forum Allergy Rhinol. 12, 1025–1033 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Liu, G. S. et al. ELHnet: a convolutional neural network for classifying cochlear endolymphatic hydrops imaged with optical coherence tomography. Biomed. Opt. Express 8, 4579–4594 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, G. S., Shenson, J. A., Farrell, J. E. & Blevins, N. H. Signal to noise ratio quantifies the contribution of spectral channels to classification of human head and neck tissues ex vivo using deep learning and multispectral imaging. J. Biomed. Opt. 28, 016004 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shenson, J. A., Liu, G. S., Farrell, J. & Blevins, N. H. Multispectral imaging for automated tissue identification of normal human surgical specimens. Otolaryngol. Head. Neck Surg. J. Am. Acad. Otolaryngol. Head. Neck Surg. 164, 328–335 (2021).

    Article 

    Google Scholar 

  • Liu, G. S. et al. End-to-end deep learning classification of vocal pathology using stacked vowels. Laryngoscope Investig. Otolaryngol. 8, 1312–1318 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, G. S., Cooperman, S. P., Neves, C. A. & Blevins, N. H. Estimation of cochlear implant insertion depth using 2D-3D registration of postoperative X-ray and preoperative CT images. Otol. Neurotol. 45, e156 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Neves, C. A. et al. Automated radiomic analysis of vestibular Schwannomas and inner ears using contrast-enhanced T1-weighted and T2-weighted magnetic resonance imaging sequences and artificial intelligence. Otol. Neurotol. 44, e602 (2023).

    PubMed 

    Google Scholar 

  • Liu, G. S. et al. Artificial intelligence tracking of otologic instruments in mastoidectomy videos. Otol. Neurotol. 45, 1192 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Youssef, A. et al. External validation of AI models in health should be replaced with recurring local validation. Nat. Med. 29, 2686–2687 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Granlund, T., Stirbu, V. & Mikkonen, T. Towards regulatory-compliant MLOps: Oravizio’s journey from a machine learning experiment to a deployed certified medical product. SN Comput. Sci. 2, 342 (2021).

    Article 

    Google Scholar 

  • Beswick, D. M. et al. Design and rationale of a prospective, multi-institutional registry for patients with sinonasal malignancy. Laryngoscope 126, 1977–1980 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Crowson, M. G. et al. A systematic review of federated learning applications for biomedical data. PLOS Digit. Health 1, e0000033 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Warnat-Herresthal, S. et al. Swarm Learning for decentralized and confidential clinical machine learning. Nature 594, 265–270 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Holm, E. A. In defense of the black box. Science 364, 26–27 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ghassemi, M., Oakden-Rayner, L. & Beam, A. L. The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digit. Health 3, e745–e750 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ayoub, N. F., Lee, Y.-J., Grimm, D. & Balakrishnan, K. Comparison between ChatGPT and Google search as sources of postoperative patient instructions. JAMA Otolaryngol. Neck Surg. 149, 556–558 (2023).

    Article 

    Google Scholar 

  • Vaira, L. A. et al. Validation of the quality analysis of medical artificial intelligence (QAMAI) tool: a new tool to assess the quality of health information provided by AI platforms. Eur. Arch. Otorhinolaryngol. 281, 6123–6131 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vaira, L. A. et al. Enhancing AI Chatbot responses in health care: the SMART prompt structure in head and neck surgery. OTO Open 9, e70075 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Judge, C. S. et al. Multimodal artificial intelligence in medicine. Kidney360 5, 1771 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Frosolini, A. et al. Artificial intelligence in audiology: a scoping review of current applications and future directions. Sensors 24, 7126 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tricco, A. C. et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann. Intern. Med. 169, 467–473 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Covidence systematic review software. Veritas Health Innovation.

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.