Scoping review of deep learning research illuminates artificial intelligence chasm in otolaryngology-head and neck surgery

Crowson, M. G. et al. A contemporary review of machine learning in otolaryngology–head and neck surgery. Laryngoscope 130, 45–51 (2020).
Google Scholar
Bur, A. M., Shew, M. & New, J. Artificial intelligence for the otolaryngologist: a state of the art review. Otolaryngol. Neck Surg. 160, 603–611 (2019).
Google Scholar
Liu, G. S., Jovanovic, N., Sung, C. K. & Doyle, P. C. A scoping review of artificial intelligence detection of voice pathology: challenges and opportunities. Otolaryngol. Neck Surg. 171, 658–666 (2024).
Google Scholar
Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. FDA (2024).
ENT Navigation Application with Kick EM from Brainlab. Brainlab https://www.brainlab.com/surgery-products/overview-ent-products/ent-navigation-application/.
Reimagining the Way Medical Devices Are Designed. PacificMD Biotech https://www.pmdbiotech.com/.
Lu, J. H. et al. Assessment of adherence to reporting guidelines by commonly used clinical prediction models from a single vendor: a systematic review. JAMA Netw. Open 5, e2227779 (2022).
Google Scholar
Vasey, B. et al. Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nat. Med. 28, 924–933 (2022).
Google Scholar
Gajecki, T., Zhang, Y. & Nogueira, W. A deep denoising sound coding strategy for cochlear implants. IEEE Trans. Biomed. Eng. 70, 2700–2709 (2023).
Google Scholar
Raghavan, A. M., Lipschitz, N., Breen, J. T., Samy, R. N. & Kohlberg, G. D. Visual speech recognition: improving speech perception in noise through artificial intelligence. Otolaryngol. -Head. Neck Surg. J. Am. Acad. Otolaryngol. -Head. Neck Surg. 163, 771–777 (2020).
Google Scholar
Healy, E. W., Taherian, H., Johnson, E. M. & Wang, D. A causal and talker-independent speaker separation/dereverberation deep learning algorithm: Cost associated with conversion to real-time capable operation. J. Acoust. Soc. Am. 150, 3976 (2021).
Google Scholar
Cohen, J. F. et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open 6, e012799 (2016).
Google Scholar
Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMC Med. 13, 1 (2015).
Google Scholar
Des Jarlais, D. C., Lyles, C. & Crepaz, N. Improving the reporting quality of nonrandomized evaluations of behavioral and public health interventions: the TREND statement. Am. J. Public Health 94, 361–366 (2004).
Google Scholar
von Elm, E. et al. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ 335, 806–808 (2007).
Google Scholar
Liu, X., Cruz Rivera, S., Moher, D., Calvert, M. J. & Denniston, A. K. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat. Med. 26, 1364–1374 (2020).
Google Scholar
Liu, Y., Chen, P.-H. C., Krause, J. & Peng, L. How to read articles that use machine learning: users’ guides to the medical literature. JAMA 322, 1806–1816 (2019).
Google Scholar
Selvaraju, R. R. et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128, 336–359 (2020).
Google Scholar
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning Deep Features for Discriminative Localization. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2921–2929 (IEEE, 2016). https://doi.org/10.1109/CVPR.2016.319.
Kamran, F. et al. Evaluation of sepsis prediction models before onset of treatment. NEJM AI 1, AIoa2300032 (2024).
Google Scholar
Ruamviboonsuk, P. et al. Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study. Lancet Digit. Health 4, e235–e244 (2022).
Google Scholar
Lind Plesner, L. et al. Commercially available chest radiograph AI tools for detecting airspace disease, pneumothorax, and pleural effusion. Radiology 308, e231236 (2023).
Google Scholar
Gomez Rossi, J., Rojas-Perilla, N., Krois, J. & Schwendicke, F. Cost-effectiveness of artificial intelligence as a decision-support system applied to the detection and grading of melanoma, dental caries, and diabetic retinopathy. JAMA Netw. Open 5, e220269 (2022).
Google Scholar
Seneviratne, M. G., Shah, N. H. & Chu, L. Bridging the implementation gap of machine learning in healthcare. BMJ Innov. 6, 45–47 (2020).
Google Scholar
Mennella, C., Maniscalco, U., De Pietro, G. & Esposito, M. Ethical and regulatory challenges of AI technologies in healthcare: a narrative review. Heliyon 10, e26297 (2024).
Google Scholar
Crowson, M. G. & Rameau, A. Standardizing machine learning manuscript reporting in otolaryngology-head & neck surgery. Laryngoscope 132, 1698–1700 (2022).
Google Scholar
Callahan, A. et al. Standing on FURM ground: a framework for evaluating fair, useful, and reliable AI models in health care systems. NEJM Catal. Innov. Care Deliv. 5, (2024).
Liu, G. S. et al. Deep learning classification of inverted papilloma malignant transformation using 3D convolutional neural networks and magnetic resonance imaging. Int. Forum Allergy Rhinol. 12, 1025–1033 (2022).
Google Scholar
Liu, G. S. et al. ELHnet: a convolutional neural network for classifying cochlear endolymphatic hydrops imaged with optical coherence tomography. Biomed. Opt. Express 8, 4579–4594 (2017).
Google Scholar
Liu, G. S., Shenson, J. A., Farrell, J. E. & Blevins, N. H. Signal to noise ratio quantifies the contribution of spectral channels to classification of human head and neck tissues ex vivo using deep learning and multispectral imaging. J. Biomed. Opt. 28, 016004 (2023).
Google Scholar
Shenson, J. A., Liu, G. S., Farrell, J. & Blevins, N. H. Multispectral imaging for automated tissue identification of normal human surgical specimens. Otolaryngol. Head. Neck Surg. J. Am. Acad. Otolaryngol. Head. Neck Surg. 164, 328–335 (2021).
Google Scholar
Liu, G. S. et al. End-to-end deep learning classification of vocal pathology using stacked vowels. Laryngoscope Investig. Otolaryngol. 8, 1312–1318 (2023).
Google Scholar
Liu, G. S., Cooperman, S. P., Neves, C. A. & Blevins, N. H. Estimation of cochlear implant insertion depth using 2D-3D registration of postoperative X-ray and preoperative CT images. Otol. Neurotol. 45, e156 (2024).
Google Scholar
Neves, C. A. et al. Automated radiomic analysis of vestibular Schwannomas and inner ears using contrast-enhanced T1-weighted and T2-weighted magnetic resonance imaging sequences and artificial intelligence. Otol. Neurotol. 44, e602 (2023).
Google Scholar
Liu, G. S. et al. Artificial intelligence tracking of otologic instruments in mastoidectomy videos. Otol. Neurotol. 45, 1192 (2024).
Google Scholar
Youssef, A. et al. External validation of AI models in health should be replaced with recurring local validation. Nat. Med. 29, 2686–2687 (2023).
Google Scholar
Granlund, T., Stirbu, V. & Mikkonen, T. Towards regulatory-compliant MLOps: Oravizio’s journey from a machine learning experiment to a deployed certified medical product. SN Comput. Sci. 2, 342 (2021).
Google Scholar
Beswick, D. M. et al. Design and rationale of a prospective, multi-institutional registry for patients with sinonasal malignancy. Laryngoscope 126, 1977–1980 (2016).
Google Scholar
Crowson, M. G. et al. A systematic review of federated learning applications for biomedical data. PLOS Digit. Health 1, e0000033 (2022).
Google Scholar
Warnat-Herresthal, S. et al. Swarm Learning for decentralized and confidential clinical machine learning. Nature 594, 265–270 (2021).
Google Scholar
Holm, E. A. In defense of the black box. Science 364, 26–27 (2019).
Google Scholar
Ghassemi, M., Oakden-Rayner, L. & Beam, A. L. The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digit. Health 3, e745–e750 (2021).
Google Scholar
Ayoub, N. F., Lee, Y.-J., Grimm, D. & Balakrishnan, K. Comparison between ChatGPT and Google search as sources of postoperative patient instructions. JAMA Otolaryngol. Neck Surg. 149, 556–558 (2023).
Google Scholar
Vaira, L. A. et al. Validation of the quality analysis of medical artificial intelligence (QAMAI) tool: a new tool to assess the quality of health information provided by AI platforms. Eur. Arch. Otorhinolaryngol. 281, 6123–6131 (2024).
Google Scholar
Vaira, L. A. et al. Enhancing AI Chatbot responses in health care: the SMART prompt structure in head and neck surgery. OTO Open 9, e70075 (2025).
Google Scholar
Judge, C. S. et al. Multimodal artificial intelligence in medicine. Kidney360 5, 1771 (2024).
Google Scholar
Frosolini, A. et al. Artificial intelligence in audiology: a scoping review of current applications and future directions. Sensors 24, 7126 (2024).
Google Scholar
Tricco, A. C. et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann. Intern. Med. 169, 467–473 (2018).
Google Scholar
Covidence systematic review software. Veritas Health Innovation.
link